skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Tonglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Contribution: A novel proactive and collaborative learning paradigm was proposed to engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary artificial intelligence (AI)-cybersecurity knowledge. Specifically, the proposed learning paradigm contains: 1) an immersive learning environment to motivate the students for exploring AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects and 2) a proactive education paradigm designed with the use of collaborative learning activities based on game-based learning and social constructivism. Background: Increasing evidence shows that AI techniques can be manipulated, evaded, and misled, which can result in new and profound security implications. There is an education and training gap to foster a qualified cyber-workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. Efforts have been made to incorporate a comprehensive curriculum to meet the demand. There still remain essential challenges for effectively educating students on the interaction of AI and cybersecurity. Intended Outcomes: A novel proactive and collaborative learning paradigm is proposed to educate and train a qualified cyber-workforce in this new era where security breaches, privacy violations, and AI have become commonplace. Application Design: The development of this learning paradigm is grounded in the pedagogical approaches of technology-mediated learning and social constructivism. Findings: Although the research work is still ongoing, the prototype learning paradigm has shown encouraging results in promoting the learners’ engagement in applied AI learning. 
    more » « less
  2. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less